Die Gestalt der Wurzeln einer irreduktibelen zyklischen Gleichung eines gegebenen Rationalitätsbereichs, deren Grad eine Primzahlpotenz ist

Von

Franz Mertens w. M. Akad.

(Vorgelegt in der Sitzung am 4. Juli 1918)

Man ermittele od er dem ligreich Be angehörende und ein

Es sei n eine Primzahlpotenz p^{π} und

$$fy=0$$

eine Gleichung n-ten Grades des Rationalitätsbereichs $\mathfrak V$ mit den Wurzeln $x_i = 0, 1, \dots n-1$,

welche in demselben irreduktibel und bei der Anordnung

$$x_0, x_1, x_2, \dots x_{n-1}$$

zyklisch ist.

Wird bei unbestimmtem x

$$L(x) = x_0 + x^{n-1}x_1 + x^{n-2}x_2 + \dots + xx_{n-1}$$

gesetzt, so hängt die Gestalt der Wurzeln x_i mit dem Verhalten der primitiven n-ten Einheitswurzeln β in dem Bereich $\mathfrak B$ und der denselben entsprechenden Lagrange'schen Resolventen $L(\beta)$ zusammen.

Die den primitiven n-ten Einheitswurzeln entsprechenden Lagrange'schen Resolventen können nicht alle = 0 sein. Denn es ist, wenn β eine bestimmte solche Wurzel bezeichnet,

$$n x_i = \sum \beta^{ih} L(\beta^h)$$
 $h = 0, 1, \dots n-1.$