1. Adaptierte und realisierende Formen. Es sei $F = a_{\xi}^{n} b_{\eta}^{m} \dots$ eine Form der binären Veränderlichen ξ, η, \dots . Als »konträr« sollen deren Glieder:

$$g_{(\alpha)} = a_{(\alpha)} \xi_1^{n-\alpha} \xi_2^{\alpha} \eta_1^{m-\beta} \eta_2^{\beta} \dots, \quad g_{(n-\alpha)} = q_{(n-\alpha)} \xi_1^{\alpha} \xi_2^{n-\alpha} \eta_1^{\beta} \eta_2^{m-\beta} \dots$$

bezeichnet werden. Ist F von gerader Gesamtordnung $n+m+\ldots$, so sind die »Gewichte«: $\alpha+\beta+\ldots$ und $n-\alpha+m-\beta+\ldots$ dieser Glieder beide gerade oder beide ungerade Zahlen. Werden dann die »konträren« Koeffizienten $a_{(\alpha)}$, $a_{(n-\alpha)}$, die beliebige komplexe Parameter sein können, diesen beiden Fällen entsprechend gesetzt:

$$a_{(\alpha)} = a'_{(\alpha)} + i a''_{(\alpha)}, \quad a_{(n-\alpha)} = \pm (a'_{(\alpha)} - i a''_{(\alpha)}),$$

so soll die Form F als »adaptiert« bezeichnet werden. Sind insbesondere alle $a'_{(\alpha)}$, $a''_{(\alpha)}$ reelle Parameter, so heiße die Form F »realisierend«.

- a) Das Produkt adaptierter Formen ist adaptiert. Denn durch Multiplikation der konträren Glieder $g_{(\alpha)}$, $g_{(n-\alpha)}$ von F mit den konträren Gliedern $h_{(\sigma)}$, $h_{(n'-\sigma)}$ einer anderen adaptierten Form $F' = a_{\xi}^{ln'}b_{\eta}^{lm'}\dots$ ergeben sich, ob nun die Gewichte dieser Glieder gerade oder ungerade sind, in dem Produkt FF' die konträren Glieder: $g_{(\alpha)}h_{(\sigma)}$, $g_{(n-\alpha)}h_{(n'-\sigma)}$ und ebenso die konträren Glieder: $g_{(\alpha)}h_{(n'-\sigma)}$, $g_{(n-\alpha)}h_{(\sigma)}$.
 - b) Jede Polare einer adaptierten Form ist adaptiert.

Denn die Operation $\varphi_1 \frac{\partial}{\partial \xi_1} + \varphi_2 \frac{\partial}{\partial \xi_2}$ gibt, an konträren Glie-

dern von F angewendet, solche der Polare.

c) Analoges gilt bei Anwendung der Operation:

$$rac{\partial^2}{\partial \xi_1 \partial \eta_2} = rac{\partial^2}{\partial \xi_2 \partial \eta_1}$$
;

daher: der Ω^k -prozeß, angewendet auf eine adaptierte Form F, gibt die adaptierte Form: $(ab)^k a_{\xi}^{n-k} b_{\eta}^{m-k} \dots$ Also sind die k-te Überschiebung der adaptierten Formen F und F', bezüglich ξ , d. i. die Form $(aa')^k a_{\xi}^{n-k} b_{\eta}^m \dots a_{\xi}^{n'-k} b_{\eta}^{m'} \dots$