Sind nun die Koordinaten von Q und $Q'=\overline{Q}$ in der oben angegebenen Weise symbolisch, wenn also die kommutativen Produkte der Koordinaten von Q mit den Koordinaten von \overline{Q} aktual sind, so ist $Q_{II}\overline{Q}$ die allgemeine reelle Weltaffinität A^n . In der Tat sind dann die Elemente a_{h4} $a_{4h}(h \pm 4)$ der Matrix der Affinität rein imaginär, die anderen reell, wie man sich aus (2) leicht überzeugt.

Aus der Aktualität des Produktes der Koordinaten, wie:

$$(A+iA')(A-iA') = A^2 + A'^2 - i(AA' - A'A),$$

 $(A+iA')(B-iB') = AB + A'B' - i(AB' - A'B)$

folgt, daß: $A^2+A'^2$, AA'-A'A; AB+A'B', AB'-A'B Zahlen sind. Um nun in $Q_{\prime\prime\prime}$ \overline{Q}' die symbolische Darstellung der allgemeinen Weltaffinität zu haben, genügt es anzunehmen, daß die Produkte der Symbole A, B, C, D mit den Symbolen A'B'C'D' kommutativ sind, worauf dann die Elemente a_{ik} der Matrix von $A^{\prime\prime\prime}$ algebraische Summen der 16 Zahlen: $A^2+A'^2$, AB+A'B', AB'-A'B usw. werden.

Nach Art. 18 ist $\underline{Q}_{\prime\prime}\overline{Q}$ die transponierte Affinität von $A^{\prime\prime\prime}$. Es sind $^{1}/_{2}(Q_{\prime\prime}\overline{Q}\pm Q_{\prime\prime}\overline{Q})$ der symmetrische Teil $A^{\prime\prime\prime}_{s}$ und der antisymmetrische Teil $A^{\prime\prime\prime}_{as}$ von $A^{\prime\prime\prime}$. Letzterer gehört zu einem Weltsechservektor.

Wegen $Q = \mathfrak{a} + \alpha$, $Q' = \mathfrak{b} + \beta = \overline{Q}$ ist hier: $\mathfrak{b} = -\overline{\mathfrak{a}}$, $\beta = \overline{\mathfrak{a}}$. Daher haben A_s^v , A_{as}^v die Gleichungen:

$$x' = -\alpha x \overline{\alpha} + \alpha \overline{\alpha} \alpha, \ x' = -x(\alpha \overline{\alpha}) + (\alpha \overline{\alpha}) x.$$

Die letzte Gleichung ist die eines Weltsechservektors, der bestimmt ist durch die konjugiertimaginären Vektoren $\alpha \overline{a}$, diese sind identisch mit den Vektoren $-1/2 \mathfrak{A}$, $-1/2 \mathfrak{B}$ des Art. 7.