Aus (2) folgt: $4\alpha\beta = a_{11} + a_{22} + a_{33} + a_{44}$, weshalb $4\alpha\beta$ die bekannte Invariante bei Drehstreckungen der Affinität A ist.

Die Drehstreckung $Q_{\prime\prime}Q^\prime$ ist reell, d. h. sie überführt einen reellen Punkt X in einen rellen X^\prime , wenn die Quaternionen Q,Q^\prime reell sind, d. h. reelle Zahlen als Koordinaten haben. Entsprechend ist die Affinität $Q_{\prime\prime}Q^\prime$ reell, wenn die symbolischen Quaternionen Q,Q^\prime »reell«, d. h. ihre Koordinaten »reelle« Symbole sind.

Die Affinität $Q_{\prime\prime}Q^\prime$ wird zu einer Affinität des R_3 , wenn zwischen den symbolischen Quaternionen Q,Q^\prime die Beziehung: $Q^\prime=Q$ besteht, wo dann die Gleichung der Affinität lautet: $\mathbf{z}^\prime=\bar{Q}\mathbf{z}^\prime Q$. Denn ist $\mathbf{z}=0$, und ist $\mathbf{z}=-\mathbf{z}$, $\mathbf{z}=\mathbf{z}$, so wird nach (1):

$$\xi' = Sx' = (\mathfrak{a} \times \mathfrak{b}) \cdot \mathfrak{x} - (\mathfrak{a}\beta + \alpha\mathfrak{b}) \cdot \mathfrak{x} + (\alpha\beta - \mathfrak{a} \cdot \mathfrak{b}) \xi = 0$$

also wird x' zu:

$$y' = (\alpha^2 - \alpha^2)y + 2\alpha\alpha \times y + 2\alpha \cdot y\alpha$$

und dies ist die Gleichung einer Affinität des R_3 , und zwar einer beliebigen, da der Skalar $\alpha^2 - \mathfrak{a}^2$, der Vektor $\mathfrak{a} \alpha$ und die symmetrische Dyade $\mathfrak{a};\mathfrak{a}$ zusammen 10 Konstanten haben, also um eine Konstante mehr als notwendig. Es kann daher noch

$$\alpha^2 - \alpha^2 = SQ^2 = 0$$

gewählt werden, wenn $Q_n\underline{Q}$ die allgemeine Affinität des R_3 sein soll. Ihre Gleichung lautet dann:

$$\mathfrak{x}' = Q\mathfrak{x}\underline{Q} = 2\mathfrak{a}.\mathfrak{x}\mathfrak{a} + 2\mathfrak{a}\mathfrak{a} \times \mathfrak{x},$$

wodurch die Affinität auch schon in ihren symmetrischen und ihren antisymmetrischen Teil zerlegt erscheint.

18. Man zeigt leicht aus (2), daß $Q_{\prime\prime}Q^{\prime}$, wo $Q=-\mathfrak{a}+\alpha$, $Q^{\prime}=-\mathfrak{b}+\beta$, die zu Q, Q^{\prime} konjugierten Quaternionen sind, die transponierte Affinität A_t der Affinität $A=Q_{\prime\prime}Q^{\prime}$ ist, d. h. die Affinität, deren Matrix zu der von A transponiert ist. Dann sind $^{1}/_{2}[Q_{\prime\prime}Q^{\prime}\pm Q_{\prime\prime}Q^{\prime}]$, beziehungsweise der symmetrische Teil A_s und der antisymmetrische Teil A_{as}