Über die rationale Kurve vierter Ordnung mit Spitzen von der 1. und 2. Art

Der zweite Schnitzpunkt nov b, und 2, ist B" und dieser

Georg Majcen in Agram.

(Vorgelegt in der Sitzung am 9. Dezember 1910.)

1. Legt man die Spitze 1. Art (S1) in den Eckpunkt B, die Spitze 2. Art (S_{II}) in den Eckpunkt A des Koordinatendreiecks und nimmt man die beiden Spitzentangenten zu Seiten $x_1 = 0$, $x_2 = 0$ des Grunddreiecks, so wird die Kurve vierter Ordnung mit Spitzen S, und S, die Gleichung haben:

$$c_4 \dots (mx_3^2 + nx_1x_2)^2 + x_2x_3^3 \equiv 0,$$
 1)

mit m und n als willkürlichen festen Parametern.

Diese Gleichung kann auch in der Form

$$(mx_3^2 - nx_1x_2)^2 + x_2x_3^2(4mnx_1 + x_3) \equiv 0$$

geschrieben werden, woraus die Gleichung der einzigen Tangente b_0 aus der Spitze B an c_4 folgt, und zwar

$$b_0 \dots 4mnx_1 + x_3 = 0. 2)$$

Der Berührungspunkt Bo dieser Tangente wird aus der Spitze A durch einen Strahl a, projiziert, dessen Gleichung durch Elimination von x_1 aus b_0 und c_4 erhalten wird, also:

$$(4m^2x_3 - x_2)^2 + 16m^2x_2x_3 = 0$$
 oder

$$a_0 \dots 4m^2 x_3 + x_2 = 0.$$
 3)

Der Strahl a_0 trifft die Kurve c_4 außer in B_0 noch in einem Punkte B_1' und dieser wird wieder aus B durch einen Strahl b_1