(im Verhältnisse der Diagonale und Seite eines Quadrates) teilt. Wenn man dann zu OD_1 in O eine Normale OF_1 von der Länge $\sqrt{a^2+b^2}$ errichtet, D_1F_1 zieht und durch C_1 zu D_1F_1 eine Parallele zieht, welche OF_1 in J_1 schneidet, so ist die Strecke C_1J_1 der Radius r_1 von K_1 .

6. Um dann die Gleichung des Kreises K_2 herzuleiten, braucht man nur X, Y die Koordinaten des Punktes $\alpha_2 = \alpha - \frac{\pi}{4}$ bedeuten zu lassen, dann in Gleichung 6)

$$x = a \cos\left(\alpha_2 + \frac{\pi}{4}\right) =$$

$$= \frac{1}{\sqrt{2}} (a \cos \alpha_2 - a \sin \alpha_2) = \frac{1}{\sqrt{2}} \left(X - \frac{a}{b} Y\right),$$

$$y = b \sin\left(\alpha_2 + \frac{\pi}{4}\right) =$$

$$= \frac{1}{\sqrt{2}} (b \sin \alpha_2 + b \cos \alpha_2) = \frac{1}{\sqrt{2}} \left(Y + \frac{b}{a} X\right)$$

zu setzen und im übrigen den gleichen Rechnungsvorgang zu befolgen wie vorhin.

Doch läßt sich die Gleichung des Kreises K_2 einfach unmittelbar aus derjenigen für K_1 herleiten auf Grund folgender Überlegung. Dieselbe Rolle, die der Kreis K_1 für das Quadrupel der Punkte α , β , γ , δ einerseits und deren konjugierte Punkte α' , β' , γ' , δ' andrerseits spielt, spielt der Kreis K_2 für das Quadrupel der Punkte α'' , β'' , γ'' , δ'' $\left(\alpha'' = \alpha - \frac{\pi}{2} \text{ u. s. w.}\right)$ einerseits und deren konjugierte Punkte α , β , γ , δ andrerseits. Daher muß aus der Gleichung des Kreises K_1 diejenige für den Kreis K_2 hervorgehen, wenn man in ersterer an Stelle der Koordinaten von P und P' beziehungsweise diejenigen von P'' und P einführt.

Werden demnach in Gleichung 9) die Koordinatenpaare (ξ,η) und (ξ',η') beziehungsweise durch die Paare $(-\xi',-\eta')$ und (ξ,η) ersetzt, so erhält man die Gleichung des Kreises K_2 in der Form