gestellte flache, schuppenförmige Eierkapseln befestigt sind. Ein solcher spiral gebauter Eierkapselstock zeigt in seinem Grundbau eine grosse Analogie mit *Spirophyton*.

Die von Esper in seinen »Pflanzenthieren«, vol. III, Taf. XXII—XXV, unter den Namen *Tubularia clavata*, sphaeroidea und tesselata abgebildeten Eierkapselstöcke von Prosobranchiern erinnern lebhaft an die quirlig gebauten Formen aus der Gruppe der spirophytenartigen Körper.

Verfasser glaubt, dass diese Schneckenlaiche und Eierkapselstöcke den Schlüssel zur Erklärung der Spirophyton-

Bildungen enthalten.

So wie es Würmer gibt, welche selbständige, feste Röhren bauen und andere, welche sich begnügen Röhren im Boden grabend anzulegen, so mag es auch Schnecken geben, welche nicht im Stande sind, freie selbständige Kapselstöcke zu erzeugen und sich begnügen müssen, ähnlich geformte Höhlen im Boden zu bilden.

Auch bei den Insecten (Bienen, Wespen, Ameisen) kommt es vor, dass gewisse Formen freie Nester bauen, andere solche in der Erde anlegen oder sich auch direct mit Höhlen und Gängen begnügen.

Dieser Gedankengang führt zu dem Schlusse, dass die Spirophyten- und verwandten Bildungen Eiernester von Meeresthieren, und zwar wahrscheinlich von Gasteropoden seien.

Ein grosser Theil des nordöstlichen Galizien wird aus Kreidemergel gebildet, welcher unmittelbar von marinen, miocänen Sanden bedeckt wird.

An der Basis dieser miocänen Sande findet man bei Lemberg und an mehreren anderen Punkten die obersten Schichten der Kreide mit Rhizocorallien¹ erfüllt, welche horizontal oder die Wölbung nach unten gekehrt im Kreidemergel stecken, selbst aber aus miocänem Sande bestehen. Es ist hiedurch erwiesen, dass diese Rhizocorallien hohle Taschen waren, welche zur Miocänzeit von Meeresthieren im anstehenden, festen Kreidegestein gegraben und nachträglich von dem marinen Sande ausgefüllt wurden, genau so wie dies auf der schwäbischen

¹ Glossifungites saxicava Lomnicki.